总 则
1.0.1
洪灾,包括由江河洪水、山洪、泥石流等引发的灾害,是威胁人类生命财产的自然灾害,给城市造成的经济损失尤为严重。城市涝灾多由暴雨形成,涝洪灾害常相伴发生。涝水形成时,往往洪峰流量也较大,城区外河水位高,涝水排泄不畅,导致低洼地带积水、路面受淹、交通中断,给人民生活带来极大不便,甚至造成较大经济损失。沿海和河口城市地势低洼,经常受海潮及台风的威胁,台风往往带来狂风、大浪、暴潮和暴雨,引起的风灾、潮灾及洪、涝灾害惨重,有时甚至是毁灭性的,潮水顶托更加剧城市的洪涝灾害,城市是地区政治、经济、文化、交通的中心,是流域防洪的重点,为了更有效地减轻洪涝潮水灾害损失,提高城市抵御洪涝潮灾害的能力,指导城市防洪潮建设,特制定本规范。
根据现行国家标准《中华人民共和国国家标准城市规划基本术语标准》GB/T
50280的规定,城市(城镇)是以非农产业和非农业人口聚集为主要特征的居民点,包括按国家行政建制设立的市和镇。市是经国家批准设市建制的行政地域,是中央直辖市、省直辖市和地辖市的统称,市按人口规模又分为大城市、中等城市和小城市;镇是经国家批准设镇建制的行政地域,包括县人民政府所在地的建制镇和县以下的建制镇;市域是城市行政管辖的全部地域。
本规范中城市防洪工程指为防治江河洪水、涝水、海潮、山洪、泥石流等自然灾害所造成的损失而修建的水工程。
1.0.3
本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第1.0.3条的规定。根据《中华人民共和国防洪法》:“防洪规划是江河、湖泊治理和防洪工程设施建设的基本依据。”“城市防洪规划,由城市人民政府组织水行政主管部门、建设行政主管部门和其他有关部门依据流域防洪规划、上一级人民政府区域防洪规划编制,按照国务院规定的审批程序批准后纳入城市总体规划。”城市防洪规划是江河流域防洪规划的一部分,并且是流域防洪规划的重点,有些城市必须依赖于流域性的洪水调度才能确保城市的防洪安全,所以本条作此规定。随着我国社会经济的发展,城市化程度不断提高、城市规模在迅速扩大、城市市政建设日新月异,因此城市防洪工程建设一方面要充分考虑城市近远期发展,为城市可持续发展留出空间;另一方面要与城市发展、市政建设相结合、相协调,与生态环境相协调,考虑技术可行、投资经济、方便人们生活、美化人们生存环境与空间,提高生活质量。所以城市防洪工程规划设计,必须以流域规划为依据,全面规划、综合治理。
1.0.4
我国地域辽阔、人口众多,城市分布于平原海滨区和山区,由于所处地域的差异,所受洪灾也有不同,平原区易于洪涝相交,积涝成灾;海滨区除受洪涝灾害威胁外,风暴潮灾也不容忽视;山区城市防洪安全受山洪、泥石流双重威胁。因此,不同地域的城市应分析本城市的灾害特点,在防御江河洪水灾害的同时,对可能产生的涝、潮、山洪、泥石流灾害有所侧重,有的放矢,取得最佳效果。
1.0.5
基础资料是设计的基础和依据,必须十分重视基础资料的收集、整理和分析工作。不同的设计阶段对基础资料的范围、精度要求不同,选用的基础资料应准确可靠,符合设计阶段深度要求。
1.0.6
本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第1.0.4条的规定,是根据《中华人民共和国河道管理条例》第11条、第16条的规定制定的。制定本条的目的是为确保河道行洪能力,保持河势稳定和维护堤防安全。
1.0.7
湿陷性黄土、膨胀土等特殊土可能使城市防洪工程失去稳定,影响工程安全,造成城市防洪工程失效。我国三北地区(东北、西北、华北)属于季节冻土及多年冻土地区,水工建筑物冻害现象十分普遍和严重;黄河、松花江等江河中下游还存在凌汛灾害;地面沉降导致防洪设施顶部标高降低,从而降低抗洪能力的情况也是屡见不鲜,上海黄浦江、苏州河防洪墙几次加高,一个重要原因就是为了弥补因地面沉降造成防洪标准的降低而进行的。地面沉降还会引起防洪设施发生裂缝、倾斜甚至倾倒,完全失去抗洪能力。上述情况均是可能危及城市防洪安全的不利状况,因此本条作此规定。
1.0.9
本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第1.0.5条的规定,将原规定“重要城市的防洪工程设计在可行性研究阶段,应参照现行《水利经济计算规范》进行经济评价,其内容可适当简化”修改为“城市防洪工程设计应按照国家现行有关标准的规定进行技术经济分析”。技术经济分析是从经济上对工程方案的合理性与可行性进行评价,为工程方案选优提供科学依据,是研究城市防洪工程建设是否可行的前提。
1.0.10
本规范具有综合性特点,专业范围广、涉及的市政设施多。本规范对城市防洪设计中所涉及的问题作了全面、概括、原则的论述,其目的是在城市防洪设计中统筹考虑、相互协调、全面配合,既保证城市防洪安全,又避免相互矛盾和干扰,满足各部门要求。对有些专业规范,我们作了必要的搭接,其他更多的专业规范不再赘述,应按有关专业规范要求执行。
2.1 城市防洪工程等别和防洪标准
2.1.1 本条是在原《城市防洪工程设计规范》CJJ
50-92第2.1.1条基础上制定的。在我国660余座建制市中,639座有防洪任务,占96.67%,达到国家防洪标准的只有236个。洪水对城市的危害程度与城市人口数量密切相关,人口越多洪水危害越大。
目前我国城市化速度加快,超过50万人口的城市较多,根据第五次人口普查结果,我国城市人口在200万以上的城市有12个,即北京市、上海市、天津市、重庆市、辽宁省沈阳市、古林省长春 市、黑龙江省哈尔滨市、江苏省南京市、湖北省武汉市、广东省广州市、四川省成都市、陕西省西安市;人口在100万~200万的城市有22个,即河北省石家庄市、河北省唐山市、山西省太原市、内蒙古自治区包头市、辽宁省大连市、辽宁省鞍山市、辽宁省抚顺市、吉林省吉林市、黑龙江省齐齐哈尔市、江苏省徐州市、浙江省杭州市、福建省福州市、江西省南昌市、山东省济南市、山东省青岛市、山东省淄博市、河南省郑州市、湖南省长沙市、贵州省贵阳市、云南省昆明市、甘肃省兰州市、新疆维吾尔自治区乌鲁木齐市;人口在50万~100万的城市则共有47个;人口在20万~50万的城市则更多,共有113个。考虑到我国城市的发展,原来的防洪标准已不适应,如果仍按原《城市防洪工程设计规范》CJJ
50-92的4个城市等级,大于150万人口的城市不论是首都、直辖市、省会城市,不论其防洪重要性如何均为一等城市,同属一个标准,显然这是不合理的。
城市防洪标准,不仅与城市的重要程度、城市人口有关,还与城市防洪工程在城市中的影响和作用有关。有的山区、丘陵区城市重要性大、人口多,但由于具体城市的自然条件因素,许多重要的基础设施、厂矿企业、学校及城市人口并不受常遇江河洪水威胁,此时笼统用城市人口套城市等别套较高城市防洪标准,就很不经济,并可能影响城市人文景观,给城市人民生活造成不便。
综上所述,本规范中,将表2.1.1中的城市等别改为城市防洪工程等别,并根据城市防洪工程保护范围内城市的社会经济地位的重要程度和防洪保护区内的人口数量划分为四等,由城市防洪工程等别确定城市防洪工程的防洪设计标准,避开城市等别问题,以改变由城市的重要程度、城市人口使城市防洪工程标准过高问题。
在现代城市居住的人口有非农业人口、农业人口还有外来人口,在不少城市中外来常住人口占有一定的比例,因此,本规范将原《城市防洪工程设计规范》CJJ
50-92中规定的非农业人口改为常住人口。
2.1.2
城市防洪工程的防御目标包括江河洪水、山洪、泥石流、海潮和涝水。
城市防洪工程的防洪设计标准是指采用防洪工程措施和非工程措施后,具有的防御江河洪水的能力。表2.1.2中的防洪设计标准,主要是参考我国城市现有的或规划的防洪标准,并考虑我国的国民经济能力等因素确定。考虑到山洪对城市造成的灾害,往往是局部的,因此采用略低于防御江河洪水的标准。
城市防洪设计标准的表述:一个城市若受多条江河洪水威胁时,可能有多个防洪标准,但表达城市防洪设计标准时应采用防御城市主要外河洪水的设计标准,同时还要说明其他的防(潮)设计标准。例如,上海防御黄浦江洪水的防洪标准为200年,防潮标准为200年一遇潮位加12级台风;武汉防长江洪水的防洪标准为100年一遇,防城区小河洪水的防洪标准为10年~20年一遇。
防洪设计标准上、下限的选用,应考虑受灾后造成的社会影响、经济损失、抢险难易等因素,酌情选取,不能一刀切。
城市治涝设计标准是本次《城市防洪设计规范》新增的内容。城市涝水指由城区降雨而形成的地表径流,一般由城市排水工程排除。城市排水工程的规模、管网布设、管理一般是由市政部门负责。城市防洪工程所涉及的治涝工程,应是承接城市排水管网流出的承泄工程,包括排涝河道、行洪河道、低洼承泄区等。
“治涝”措施主要采取截、排、滞,即拦截排涝区域外部的径流使其不进入本区域;将区内涝水汇集起来排到区外;充分利用区内湖泊、洼淀临时滞蓄涝水。
治涝设计标准表达方式有两种,一种以消除一定频率的涝灾为设计标准,通常以排除一定重现期的暴雨所产生的径流作为治涝工程的设计标准;另一种则以历史上发生涝灾比较严重的某年实际发生的暴雨作为治涝标准。
城市治涝设计标准应与城市政治、经济地位相协调。目前,我国一些城市的治涝设计标准基本在5年~20年一遇,北京市和南京市的治涝设计标准为20年一遇;上海市治涝设计标准为20年一遇24h
200mm雨量随时排除;杭州市建成区20年一遇24h暴雨当天排干;宁波市市内排涝20年一遇24h暴雨1日排干;广东地级市治涝设计暴雨重现期10年~20年一遇,县级市10年一遇,城市及菜地排水标准24h暴雨1日路、地面水排干;天津市规划治涝设计标准为20年一遇;福州市治涝设计标准5年一遇内涝洪水内河不漫溢;武汉市的治涝设计标准为3年~5年一遇。
城市的治涝设计标准应根据城市的具体条件,经技术经济比较确定。同一城市中,重要干道、重要地区或积水后可能造成严重不良后果的地区,治涝设计标准(重现期)可高些,一些次要地区或排水条件好的地区,重现期也可适当低些。
2.1.3
本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第2.1.3条的规定。我国幅员辽阔,各城市的自然、经济条件相差较大,不可能把各类城市的防洪工程的防洪标准全规定下来,应根据需要与可能,结合城市防洪保护区的具体情况,经技术经济比较论证,报上级主管部门批准后可适当提高或降低其标准。由于投资所限,城市防洪工程的防洪标准不能一步到位时,可分期实施。
2.1.4
本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第2.1.4条的规定。当城市分布在河流两岸或城市被河流分隔成多个片区时,城市防洪工程可分区修建。各分区城市防洪工程可根据其防洪保护区的重要性选取不同的工程等别与设计标准,这样,使必须采用较高防洪设计标准的防护区得到应有的安全保证,同时也不致因局部重要地区而提高整个城市的防洪设计标准,以节省投资。
2.1.5
本条基本沿用原《城市防洪工程设计规范》CJJ 50-92第2.1.5条的规定。
2.1.6 本条是对城市防洪工程抗震设计的规定。
2.2 防洪建筑物级别
2.2.1 本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第2.2.1条的规定,仅将原标准中的“城市等别”修改为“城市防洪工程等别”。城市防洪建筑物系防洪工程中的所有建筑物的总称,主要是堤防、防洪闸、穿堤建筑物和穿越江河的交叉建筑物。
确定城市防洪建筑物的级别主要根据城市防洪工程的等别和建筑物的重要性而定,根据具体情况本规范将防洪建筑物的级别分为5级。
2.2.2
本条为新增的内容,是参照现行行业标准《水利水电工程等级划分及洪水标准》SL
252-2000第2.2.5条制定的。穿堤建筑物与堤防同时挡水,一旦失事修复困难,加固也很不容易;拦河建筑物两岸联结建筑物也建在堤防上,同样存在加固、修复困难的问题,因此规定拦河建筑物、穿堤建筑物级别不低于堤防级别,可根据其规模和重要性确定等于或高于堤防本身的级别。
2.2.3
因为防洪建筑物的安全超高和稳定安全系数在各单项工程相应的设计规范中均有详细规定,所以本规范取消了原《城市防洪工程设计规范》CJJ
50-92中第2.3节、第2.4节内容,代之以“城市防洪工程建筑物的安全超高和稳定安全系数,应按国家现行有关标准的规定确定”。
3.1 设计洪水
3.1.1 本章是在原《城市防洪工程设计规范》CJJ 50-92第4章规定的基础上制定的。本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第4.1.1条的规定。本规范所称的设计洪水是指城市防洪工程设计中江河、山沟和城市山丘区河沟设计断面所指定标准的洪水,根据城市防洪工程设计需要可分别计算设计洪峰流量、时段洪量及洪水过程线。城市江河具有一定的长度,一般要选定一个控制断面作为设计断面进行设计洪水计算。城市防洪建筑物主要是洪峰流量(反映在水位)起控制作用。鉴于洪水位受河道断面的影响,一般采用先计算设计洪水流量再用水位流量关系法或推水面线的方法确定设计洪水位,不宜通过洪水位频率曲线外延推求稀遇标准的设计洪水位,因此删除了原《城市防洪工程设计规范》CJJ
50-92中有关用频率分析方法计算设计洪水位的内容。
3.1.2 本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第4.1.3条的规定。水文资料关系到设计洪水计算方法的选择及成果的精度和质量,因此本条规定计算设计洪水依据的资料应准确可靠,必要时进行重点复核。
3.1.3
本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第4.1.4条的规定,是对计算设计洪水系列及洪水形成条件的一致性的要求,相伴的还有合理性检查。
3.1.4
本条基本沿用原《城市防洪下程设计规范》CJJ 50-92第4.1.5条的规定。计算设计洪水时根据设计流域的资料条件采用下列方法:
1
大中型城市防洪工程,基本采用流量资料计算设计洪水。城市防洪的设计断面或其上、下游附近有水文站且控制面积相差不大时,可直接使用其资料作为计算设计洪水的依据。当城市受一条以上河流的洪水威胁,且不同河流的洪水成因相同并相互连通时,则选定某一控制不同河流的总控制断面作为设计断面,也可将不同河流附近控制站的洪水资料演算至总设计断面进行叠加,计算设计洪水。
2
城市江河设计断面附近没有可以直接引用的流量资料时,可采用暴雨资料来推算设计洪水。由暴雨推算设计洪水有许多环节,如产流、汇流计算中有关参数的确定,要求有多次暴雨、洪水实测资料,以分析这些参数随洪水特性变化的规律,特别是大洪水时的变化规律。
3
有的城市所在河段不仅没有流量资料,且流域内暴雨资料也短缺时,可利用地区综合法估算设计洪水。
对于山沟、城市山丘区河沟等小流域可用推理公式或经验公式法估算设计洪水,也可采用经审批的各省(市、区)《暴雨洪水查算图表》计算设计洪水。但是,《暴雨洪水查算图表》是为无资料地区的中小型水库工程进行设计洪水计算而编制的,主要用于计算稀遇设计洪水,用于计算常遇(50年一遇及其以下标准)洪水,其计算结果有偏大的可能,同此,需要注意分析计算成果的合理性。
4
对于城市山丘区河沟设计断面,由于城市化的发展使地面不透水面积增长,暴雨的径流系数增大,洪水量增加,加快汇流速度,使洪峰流量增大和峰现时间提前。因此设计洪水计算应根据城市发展规划,考虑城市化的影响。
3.1.5
本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第4.1.6条的规定。设计洪水是重要的设计数据,如果偏小,就达不到要求的设计标准,严重时会影响到城市的安全;若数据偏大,将造成经济上的浪费。一条河流的上下游或同一地区的洪水具有一定的洪水共性,因而应对设计洪水计算的主要环节、选用的有关参数和计算成果进行地区上的综合分析,检查成果的合理性。
3.1.6
本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第4.1.7条的规定。设计断面上游调蓄作用较大的工程,是指设计断面以上流域内已建成或近期将要兴建具有较大调蓄能力的水库、分洪、滞洪等工程。推求设计断面受上游水库调蓄影响的设计洪水,应进行分区,分别计算调蓄工程以上、调蓄工程至城市设计断面之间的设计洪水。应拟定设计断面以上的洪水地区组成方式。本条规定了设计洪量分配可采用典型洪水组成法和同频率组成法两种基本方法。由于河网调蓄作用等因素影响,一般不能用洪水地区组成法拟定设计洪峰流量的地区组成。
3.1.7
本条基本沿用原《城市防洪工程设汁规范》CJJ
50-92第4.1.8条的规定。放大典型洪水过程线,要考虑工程防洪设计要求和流域洪水特性。洪峰流量、时段洪量都对工程防洪安全起作用时,可采用按设计洪峰流量、时段洪量控制放大,即同频率放大。但是,为了不致严重影响洪水时程分配特征,时段不宜过多,以2个~3个时段为宜。工程防洪主要由洪峰流量或某个时段洪量控制时,可采用按设计洪峰流量或某个时段洪量控制同倍比放大。
由于各分区洪水过程线是设计断面洪水过程线的组成部分,因此各分区都采用同一典型洪水过程线放大,才能使各分区流量过程组合后与设计断面的时段流量基本一致,满足上下游之间的水量平衡。
3.1.8
本条基本沿用原《城市防洪工程设计规范》CJJ
50-92第1.1.9条的规定。所拟定的设计洪水地区组成方式在设计条件下是否合理,需要通过分析该组成是否符合设计断面以上各分区大洪水组成规律才能加以判断。拟定设计洪水地区组成方式后,一般先分配各分区洪量,后放大设计洪水过程线。如果采用同频率洪水地区组成法分配时段洪量,各分区洪水过程线的放大倍比是不相同的,虽然时段洪量已得到控制,但各分区洪水过程线组合到设计断面的各时段洪量不一定满足水量平衡要求。因此,应从水量平衡方面进行合理性检查。如果差别较大,可进行适当调整。
3.1.9
城市河段治理是流域防洪规划中的重要内容,设计洪水位影响因素复杂。为保持规划设计成果的一致,增加本条规定。在经主管部门审批的流域规划或防洪规划中明确规定城市河段的控制设计洪水位时,该设计洪水位可作为城市防洪工程设计的依据直接引用。但是,当影响设计洪水位的因素与流域规划或防洪规划中的条件不同时,需进行复核、不宜直接引用。
3.2 设计涝水
3.2.1
本条规定了城市涝水计算的基本方法。本规范所称的设计涝水是指城市及郊区平原区因暴雨而产生的指定标准的水量。根据城市防洪工程设计需要可分别计算设计涝水流量(或排涝模数)、捞水总量及涝水过程线。
3.2.2
按涝水形成地区下垫面情况的不同,涝区可分为农区(郊区)和城(市)区(市政排水管网覆盖区域)两部分。涝水的排水系统一般根据城市规划布局、地形条件,按照就近分散、自流排放的原则进行流域划分和系统布局。城区和郊区的下垫面情况不同,对暴雨产、汇流的影响也不同;不同分区涝水的排出口位置不同,承泄区也可能不同,因此应按下垫面条件和排水系统的组成情况进行分区,分别计算各分区的涝水。
3.2.3
郊区以农田为主的分区设计涝水,主要与设计暴雨历时、强度和频率,排水区形状,排涝面积,地面坡度,植被条件,农作物组成,土壤性质,地下水埋深,河网和湖泊的调蓄能力,排水沟网分布情况以及排水沟底比降等因素有关。市政排水管网覆盖区域分区设计涝水,主要与设计暴雨历时、强度和频率,分区面积,建筑密集程度和雨水管设计排水流量等因素有关。因此,设计涝水应根据当地或邻近地区的实测资料分析确定。
设计涝水计算的基本方法与设计洪水相同,只是设计涝水的标准比较低,其次平原区流域下垫面受人类活动影响较大,而且这些影响是渐变的,因此要特别注意实测资料系列的一致性。
3.2.4
本条采用了现行同家标准《灌溉与排水工程设计规范》GB
50288-1999中第3.2.4条的内容。规定了地势平坦、以农田为主分区的地区缺少实测资料时,设计涝水的计算方法。
3.2.5
本条规定了城市排水管网控制区在缺少实测资料情况下分区设计涝水的计算方法。
1
暴雨时段根据设计要求确定,设计面暴雨按资料条件进行计算。各分区采用同一设计面暴雨量。典型暴雨过程在与时段设计面暴雨量接近的自记雨量资料中选取。
综合径流系数采用现行同家标准《室外排水设计规范》GB
50014-2011第中3.2.2条的内容,根据排水分区建筑密集程度,按本规范表3.2.5确定。对于城区而言,流域下垫面大多为硬化的不透水面积,暴雨损失主要表现为暴雨初期的截留和填洼,下渗所占比重较小,因此可根据具体情况分析确定扣损方法,计算产流过程。
2
城市排水管网控制区汇流一般通过地面、众多雨水井和排水管渠汇集,出流受排水管渠规模的限制。汇流时间为地面集水时间和管渠内流行时间,汇流较快。当分区排水面积在2km2左右时,汇流时间一般在1h以内。针对城市化地区排水系统的管道集、流程短、集流快和整个市政管网的调蓄能力极为有限的特点,可忽略汇流过程中管网的调蓄作用,直接采用净雨过程作为涝水的汇集过程,即可按等流时线法将分区净雨过程概化为时段平均流量过程。然后再以分区雨水管的设计流量为控制推算排水过程。当流量小于或等于雨水管的设计流量时,即为本时段排水流量;当流量大于雨水管的设计流量时,即形成本区地面积水,本时段排水流量为雨水管的设计流量,形成的地面积水计入下一时段;依此类推计算排水过程。在资料较齐全的流域,可选用流域水文模型进行汇流计算。
关于分区雨水管的设计流量,若已有规划设计审批成果或管网已建成,可采用已有成果,否则按本规范第3.2.6条的规定进行计算。
3
对于城市的低洼区,可参照本规范第3.2.4条的平均排除法计算设计涝水。暴雨历时和排水历时等参数可根据设计要求分析确定。排水过程应考虑泵站的排水能力。
3.2.6
本条采用现行国家标准《室外排水设计规范》GB 50014-2011中第3.2.1条和第3.2.4条的内容。
1
城区雨水量的估算,采用其推理公式。
2
城区暴雨强度公式,在城市雨水量估算中,宜采用规划城市近期编制的公式。当规划城市无上述资料时,可参考地理环境及气候相似的邻近城市暴雨强度公式。雨水计算的重现期一般选用1年~3年,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般选用3年~5年,并应与道路设计协调。特别重要地区可采用10年以上。这里所说的重现期与水利行业的重现期不同,为年选多个样法的计算结果。
3
径流系数,在城市雨水量估算中宜采用城市综合径流系数。全国不少城市都有自己城市在进行雨水径流计算中采用的不同情况下的径流系数。按建筑密度将城市用地分为城市中心区、一般规划区和不同绿地等,按不同的区域,分别确定不同的径流系数。城市人口密集,基础设施多且发展快,估算设计涝水流量,应考虑地面硬化涝水流量增大的因素。在选定综合径流系数时,应以城市规划期末的建筑密度为准,并考虑到其他少量污水量的进入,取值不可偏小,必要时应留有适当裕度。
3.2.7
对城市涝水和生产、生活污水合用的排水河道,排水河道的设计排水流量除考虑设计涝水流量外,污水汇入量也要计算在内,以保证排水河道规模。
3.2.8
城市的河、湖、洼地,在排涝期间有一定的调蓄能力。对利用河、湖、洼蓄水、滞洪的地区,排涝河道的设计排涝流量,应考虑排涝期间河、湖、洼地的蓄水、滞洪作用。
3.3 设计潮水位
3.3.1 本节更新了原《城市防洪工程设计规范》CJJ 50-92第4.2节的内容。设计潮水位分析计算采用现行行业标准《水利水电工程水文计算规范》SL
278-2002中第5.2节的内容。
3.3.2
潮水位系列根据设计要求,按年最大(年最小)值法选取高、低潮水位。对历史上出现的特高特低潮水位,需注意特高潮水位时有无漫溢,特低潮水位时河水与外海有无隔断。
3.3.3
本条规定了设计依据站实测潮水位系列在5年以上但不足30年时,设计潮水位计算方法与要求。
3.3.4
本条规定了潮水位频率曲线采用的线型。根据我国滨海和感潮河段37个站潮水位分析,皮尔逊Ⅲ型能较好地拟合大多数较长潮水位系列,因此规定可采用皮尔逊Ⅲ型。
3.3.5
设计潮水位过程的选择,即潮型设计,包括设计高低潮水位相应的高高潮水位(或设计高高潮水位相应的高低潮水位)推求、涨落潮历时统计和潮水位过程线绘制等。
设计高低潮水位相应的高高潮水位(或设计高高潮水位相应的高低潮水位)的确定;从历年汛期实测潮水位资料中选择与设计高低潮水位值相近的若干次潮水过程,求出相应的高高潮水位。采用相应的高高潮水位的平均值或采用其中对设计偏于不利的一次高高潮水位作为与设计高低潮水位相应的高高潮水位(设计高高潮水位相应的高低潮水位的确定,方法同上)。
涨潮历时、落潮历时统计:从实测潮水位资料中找出与设计频率高低潮水位(或高高潮水位)相接近的若干次潮水位过程,统计每次潮水位过程的涨潮历时和落潮历时,取其平均值或对设计偏于不利的涨潮历时和落潮历时。
潮水位过程设计:可根据上述分析拟定的设计高低潮水位(或高高潮水位)和相应的高高潮水位(或高低潮水位)及涨潮历时或落潮历时,在历年汛期实测潮水位过程中选取与上述特征相近的潮型,按设计值控制修匀得到设计潮水位过程。
3.3.6
挡潮闸关闭使涨潮阻于闸前,潮流动能变为势能,产生潮水位壅高现象;落潮时,闸上无水流动能下传,闸下潮水的部分势能变为动能使水流出,产生潮水位落低现象。因此,在挡潮闸设计时,需考虑建闸引起的潮水位壅高和落低。雍高和落低数值,可根据类似工程的实际观测资料和数模计算确定,有条件时还可进行物理模型试验。
3.3.7
设计高、低潮水位计算成果,可通过本站与地理位置、地形条件相似地区的实测或调查特高(低)潮水位、计算成果等方面分析比较,检查其合理性。
12.3 防洪预警
12.3.1~12.3.5
城市防洪是一项涉及面很广的系统工程,除建设完整的工程体系外,还需加强城市防洪非工程体系的建设,工程措施与非工程措施并用,才能最大限度地发挥城市防洪工程的效益。防洪预警系统是防洪非工程措施的重要内容,建立防洪预警系统是非常必要的,在此规定了防洪预警系统应包括的主要内容、设计依据和原则等。
12.3.6
防洪预警系统应是一个实时的、动态的系统,在实际运行中应进行动态管理,结合新的工程情况和调度方案进行不断修订,不断补充完善,其中既包括由于工程情况和调度方案的变化而造成的防汛指挥调度系统的修订,也包括随着科技的发展和对防汛指挥调度系统认识及要求的提高而需要进行的修订。
13.1 环境影响评价与环境保护设计
13.1.1 本条规定了不同设计阶段环境影响评价的工作深度与内容。
13.1.2
本条规定了城市防洪工程环境影响评价的依据。
13.1.3
本条规定了城市防洪工程环境影响评价应包括的对特有环境影响内容。
13.1.5 本条规定了城市防洪工程环境保护设计的内容。
13.2 水土保持设计
13.2.1~13.2.3 这三条规定了水土保持设计的依据与城市防洪工程水土保持设计的特殊要求。
标签:
本文链接:/guifan/3927.html
版权声明:站内所有文章皆来自网络转载,只供模板演示使用,并无任何其它意义!
上一篇:城市规划编制办法